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Introduction to different cases of 

Analysis 
• Worst case 

– Provides an upper bound on running time 

– An absolute guarantee that the algorithm would not run longer, 

no matter what the inputs are 

• Best case 
– Provides a lower bound on running time 

– Input is the one for which the algorithm runs the fastest 

 

 

• Average case 
– Provides a prediction about the running time 

– Assumes that the input is random 

 

Lower Bound RunningTime Upper Bound 
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Asymptotic Analysis 

• To compare two algorithms with running 

times f(n) and g(n), we need a rough 

measure that characterizes how fast 

each function grows. 

• Hint: use rate of growth  

• Compare functions in the limit, that is, 

asymptotically! 

(i.e., for large values of n) 
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Rate of Growth 

• Consider the example of buying elephants and 
goldfish: 

  Cost: cost_of_elephants + cost_of_goldfish 

  Cost ~ cost_of_elephants (approximation) 

• The low order terms in a function are relatively 
insignificant for large n 

              n4 + 100n2 + 10n + 50    ~     n4 

 

 i.e., we say that n4 + 100n2 + 10n + 50 and n4 
have the same  rate of growth  
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Asymptotic Notation 

• O notation: asymptotic “less than”:    

– f(n)=O(g(n)) implies:  f(n) “≤” g(n) 

•  notation: asymptotic “greater than”:   

– f(n)=  (g(n)) implies: f(n) “≥” g(n) 

•  notation: asymptotic “equality”:    

– f(n)=  (g(n)) implies: f(n) “=” g(n) 
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Big-O Notation 

• We say fA(n)=30n+8 is order n, or O (n)   

It is, at most, roughly proportional to n. 

• fB(n)=n2+1 is order n2, or O(n2). It is, at most, 

roughly proportional to n2. 

• In general, any O(n2) function is faster- 

growing than any O(n) function. 
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Asymptotic notations 

• O-notation 
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Examples 

– 2n2 = O(n3): 

–  n2 = O(n2): 

–  1000n2+1000n = O(n2):  

  

–  n = O(n2): 

2n2 ≤ cn3  2 ≤ cn  c = 1 and n0= 2 

n2 ≤ cn2  c ≥  1   c = 1 and n0= 1 

1000n2+1000n ≤ 1000n2+ n2 =1001n2 c=1001 and n0 = 1000 

n ≤ cn2  cn ≥ 1  c = 1 and n0= 1 
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Asymptotic notations (cont.) 

•  - notation 

    (g(n)) is the set of functions 

with larger or same order of 

growth as g(n) 
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Examples 

–  5n2 = (n) 

  

– 100n + 5 ≠ (n2) 

 

 

 

 

– n = (2n), n3 = (n2), n = (logn) 

 c, n0 such that: 0  cn  5n2   cn  5n2   c = 1 and n0 = 1  

 c, n0 such that: 0  cn2  100n + 5 

100n + 5  100n + 5n ( n  1) = 105n 

cn2  105n  n(cn – 105)  0  

Since n is positive  cn – 105  0  n  105/c 

 contradiction: n cannot be smaller than a constant 
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Asymptotic notations (cont.) 

• -notation 

    (g(n)) is the set of functions 

with the same order of growth 

as g(n) 
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Examples 

– n2/2 –n/2 = (n2) 

• ½ n2 - ½ n ≤ ½ n2 n ≥ 0       c2= ½ 

• ½ n2 - ½ n ≥ ½ n2 - ½ n * ½ n ( n ≥ 2 ) = ¼ n2 

    c1= ¼  

 

– n ≠ (n2): c1 n2 ≤ n ≤ c2 n2  

  only holds for: n ≤ 1/c1 
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Common orders of magnitude 
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Master Method 

 
• for T(n) = aT(n/b)+f(n),  n/b may be n/b or n/b.  

 where a  1, b>1 are positive integers, f(n) be a non-
negative function. 

1. If f(n)=O(nlogb
a-) for some >0, then T(n)= (nlogb

a). 

2. If f(n)= (nlogb
a), then T(n)= (nlogb

a lg n). 

3. If f(n)=(nlogb
a+) for some >0, and if af(n/b) cf(n) for 

some c<1 and all sufficiently large n, then T(n)= (f(n)).` 
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Implications of Master Theorem 

• Comparison between f(n) and nlogb
a (<,=,>) 

• Must be asymptotically smaller (or larger) by a 
polynomial, i.e., n for some >0. 

• In case 3, the “regularity” must be satisfied, i.e., 
af(n/b) cf(n) for some c<1 . 

• There are gaps  
– between 1 and 2: f(n) is smaller than nlogb

a, but not 
polynomially smaller. 

– between 2 and 3: f(n) is larger than nlogb
a, but not 

polynomially larger. 

– in case 3, if the “regularity” fails to hold. 
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Application of Master Theorem 

• T(n) = 9T(n/3)+n;    

– a=9,b=3, f(n) =n 

– nlogb
a = nlog3

9 =  (n2) 

– f(n)=O(nlog3
9-) for =1 

– By case 1, T(n) = (n2). 

• T(n) = T(2n/3)+1 

– a=1,b=3/2, f(n) =1 

– nlogb
a = nlog3/2

1 =  (n0) =  (1) 

– By case 2, T(n)= (lg n). 
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Application of Master Theorem 

• T(n) = 3T(n/4)+nlg n;    

– a=3,b=4, f(n) =nlg n 

– nlogb
a = nlog4

3 =  (n0.793) 

– f(n)= (nlog4
3+) for 0.2 

– Moreover, for large n, the “regularity” holds for c=3/4. 

• af(n/b) =3(n/4)lg (n/4)  (3/4)nlg n = cf(n) 

– By case 3, T(n) = (f(n))= (nlg n). 
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Scope of research: To find the solution for 

Exception to Master Theorem 

• T(n) = 2T(n/2)+nlg n; 

– a=2,b=2, f(n) =nlg n 

– nlogb
a = nlog2

2 =  (n) 

– f(n) is asymptotically larger than nlogb
a , but not 

polynomially larger because 

– f(n)/nlogb
a = lg n,  which is asymptotically less than n 

for any >0. 

– Therefore,this is a gap between 2 and 3.   



Assignment 

• What is master method? 

• How to find Big-O notation for given problem 
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