
Asymptotic Notation & Master

Method

2

Introduction to different cases of

Analysis
• Worst case

– Provides an upper bound on running time

– An absolute guarantee that the algorithm would not run longer,

no matter what the inputs are

• Best case
– Provides a lower bound on running time

– Input is the one for which the algorithm runs the fastest

• Average case
– Provides a prediction about the running time

– Assumes that the input is random

Lower Bound RunningTime Upper Bound 

3

Asymptotic Analysis

• To compare two algorithms with running

times f(n) and g(n), we need a rough

measure that characterizes how fast

each function grows.

• Hint: use rate of growth

• Compare functions in the limit, that is,

asymptotically!

(i.e., for large values of n)

4

Rate of Growth

• Consider the example of buying elephants and
goldfish:

 Cost: cost_of_elephants + cost_of_goldfish

 Cost ~ cost_of_elephants (approximation)

• The low order terms in a function are relatively
insignificant for large n

 n4 + 100n2 + 10n + 50 ~ n4

 i.e., we say that n4 + 100n2 + 10n + 50 and n4
have the same rate of growth

5

Asymptotic Notation

• O notation: asymptotic “less than”:

– f(n)=O(g(n)) implies: f(n) “≤” g(n)

•  notation: asymptotic “greater than”:

– f(n)=  (g(n)) implies: f(n) “≥” g(n)

•  notation: asymptotic “equality”:

– f(n)=  (g(n)) implies: f(n) “=” g(n)

6

Big-O Notation

• We say fA(n)=30n+8 is order n, or O (n)

It is, at most, roughly proportional to n.

• fB(n)=n2+1 is order n2, or O(n2). It is, at most,

roughly proportional to n2.

• In general, any O(n2) function is faster-

growing than any O(n) function.

7

Asymptotic notations

• O-notation

8

Examples

– 2n2 = O(n3):

– n2 = O(n2):

– 1000n2+1000n = O(n2):

– n = O(n2):

2n2 ≤ cn3  2 ≤ cn  c = 1 and n0= 2

n2 ≤ cn2  c ≥ 1  c = 1 and n0= 1

1000n2+1000n ≤ 1000n2+ n2 =1001n2 c=1001 and n0 = 1000

n ≤ cn2  cn ≥ 1  c = 1 and n0= 1

9

Asymptotic notations (cont.)

•  - notation

 (g(n)) is the set of functions

with larger or same order of

growth as g(n)

10

Examples

– 5n2 = (n)

– 100n + 5 ≠ (n2)

– n = (2n), n3 = (n2), n = (logn)

 c, n0 such that: 0  cn  5n2  cn  5n2  c = 1 and n0 = 1

 c, n0 such that: 0  cn2  100n + 5

100n + 5  100n + 5n ( n  1) = 105n

cn2  105n  n(cn – 105)  0

Since n is positive  cn – 105  0  n  105/c

 contradiction: n cannot be smaller than a constant

11

Asymptotic notations (cont.)

• -notation

 (g(n)) is the set of functions

with the same order of growth

as g(n)

12

Examples

– n2/2 –n/2 = (n2)

• ½ n2 - ½ n ≤ ½ n2 n ≥ 0  c2= ½

• ½ n2 - ½ n ≥ ½ n2 - ½ n * ½ n (n ≥ 2) = ¼ n2

  c1= ¼

– n ≠ (n2): c1 n2 ≤ n ≤ c2 n2

  only holds for: n ≤ 1/c1

13

Common orders of magnitude

14

Master Method

• for T(n) = aT(n/b)+f(n), n/b may be n/b or n/b.

 where a  1, b>1 are positive integers, f(n) be a non-
negative function.

1. If f(n)=O(nlogb
a-) for some >0, then T(n)= (nlogb

a).

2. If f(n)= (nlogb
a), then T(n)= (nlogb

a lg n).

3. If f(n)=(nlogb
a+) for some >0, and if af(n/b) cf(n) for

some c<1 and all sufficiently large n, then T(n)= (f(n)).`

15

Implications of Master Theorem

• Comparison between f(n) and nlogb
a (<,=,>)

• Must be asymptotically smaller (or larger) by a
polynomial, i.e., n for some >0.

• In case 3, the “regularity” must be satisfied, i.e.,
af(n/b) cf(n) for some c<1 .

• There are gaps
– between 1 and 2: f(n) is smaller than nlogb

a, but not
polynomially smaller.

– between 2 and 3: f(n) is larger than nlogb
a, but not

polynomially larger.

– in case 3, if the “regularity” fails to hold.

16

Application of Master Theorem

• T(n) = 9T(n/3)+n;

– a=9,b=3, f(n) =n

– nlogb
a = nlog3

9 =  (n2)

– f(n)=O(nlog3
9-) for =1

– By case 1, T(n) = (n2).

• T(n) = T(2n/3)+1

– a=1,b=3/2, f(n) =1

– nlogb
a = nlog3/2

1 =  (n0) =  (1)

– By case 2, T(n)= (lg n).

17

Application of Master Theorem

• T(n) = 3T(n/4)+nlg n;

– a=3,b=4, f(n) =nlg n

– nlogb
a = nlog4

3 =  (n0.793)

– f(n)= (nlog4
3+) for 0.2

– Moreover, for large n, the “regularity” holds for c=3/4.

• af(n/b) =3(n/4)lg (n/4)  (3/4)nlg n = cf(n)

– By case 3, T(n) = (f(n))= (nlg n).

18

Scope of research: To find the solution for

Exception to Master Theorem

• T(n) = 2T(n/2)+nlg n;

– a=2,b=2, f(n) =nlg n

– nlogb
a = nlog2

2 =  (n)

– f(n) is asymptotically larger than nlogb
a , but not

polynomially larger because

– f(n)/nlogb
a = lg n, which is asymptotically less than n

for any >0.

– Therefore,this is a gap between 2 and 3.

Assignment

• What is master method?

• How to find Big-O notation for given problem

19

